Равностепенная непрерывность - definição. O que é Равностепенная непрерывность. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Равностепенная непрерывность - definição

СВОЙСТВО СЕМЕЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ

Равностепенная непрерывность         

важное свойство некоторых семейств функций. Семейство функций называется равностепенно непрерывным на данном отрезке [а, b], если для всякого числа ε > 0 найдётся такое δ > 0, что |f (x2) - f (x1)| < ε для любых x1 и x2 из [а, b] для которых |x2 - x1| < δ, и для любой функции f (x) данного семейства. Все функции равностепенно непрерывного семейства равномерно непрерывны на [a, b] (см. Равномерная непрерывность).

Свойство Р. н. семейства функций находит приложения в теории дифференциальных уравнений и функциональном анализе благодаря следующей теореме: для того чтобы из данного семейства функций можно было выделить равномерно сходящуюся последовательность (см. Равномерная сходимость), необходимо и достаточно, чтобы семейство функций было равностепенно непрерывно и равномерно ограниченно (т. е. чтобы все функции семейства удовлетворяли на [а, b] условию |f (x)| ≤ M с одним и тем же М). Возможность выделить равномерно сходящуюся последовательность означает, что данное семейство образует относительно компактное множество в пространстве С непрерывных функций (см. Компактность).

Равностепенная непрерывность         
Равностепенная непрерывность — свойство семейства непрерывных функций, заключающееся в том, что всё семейство функций изменяется некоторым контролируемым образом. Применяется, чтобы выбрать равномерно сходящуюся последовательность из некоторого семейства функций: теорема Арцела — Асколи позволяет это сделать для равностепенно непрерывного и равномерно ограниченного семейства на, например, компактном метрическом пространстве.
Абсолютная непрерывность         
Абсолютная непрерывность меры; Абсолютно непрерывная функция; Абсолютно-непрерывная функция
Абсолютная непрерывность — в математическом анализе свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.

Wikipédia

Равностепенная непрерывность

Равностепенная непрерывность — свойство семейства непрерывных функций, заключающееся в том, что всё семейство функций изменяется некоторым контролируемым образом. Применяется, чтобы выбрать равномерно сходящуюся последовательность из некоторого семейства функций: теорема Арцела — Асколи позволяет это сделать для равностепенно непрерывного и равномерно ограниченного семейства на, например, компактном метрическом пространстве.

O que é Равностеп<font color="red">е</font>нная непрер<font color="red">ы</font>вность - definição,